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Considerations of the creative postdesignationist pravide the
groundwork for justifying a break with overly narrow construals of NP
methodology. This break is not new but reflects sound uses of those
procedures in much of scientific practice. What is still needed is a clear
articulation of the associated error-statistical arguments. This is part of
the larger task of setting out an adequate methodology of experiment,
a task that requires domain-specific considerations and is beyond the
.scope of this book. Despite wide latitude for such a program, the one
thing retained is the constraint—formal or informal—of error statistics
or severity. This stands in marked contrast to the alternative program
represented by the Bayesian Way. Deliberate disregard for this con-
straint, as will be seen in the next chapter, “frees” the Bayesian to view

wcmabm and data snooping as irrelevant to the import of the evidence
inhand. =~ :
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Why You Cannot Be Just a
Little Bit Bayesian

To understand how radical the likelihood principle must appear to.
many. objectivists, note first that in accepting this principle one
renounces all desire to make his estimates unbiased. An even more
radical consequence of the likelihood principle is the thesis of the
innocuousness of [rules to stop the experiment].

——Bruno de Finetti, Probability. Induction and Statistics: The Art of -
: Guessing, p. 170

The likelihood principle emphasized in Bayestan statistics implies,
among other things, that the rules governing when data collection
stops are frrelevant to data interpretation. It is entirely appropriate
to collect data until a point has been proved or disproven. ‘

' _Ward Edwards, Harold Lindman, and Leonard Savage, “Bayes-

ian Statistical Inference for Psychological Research,” p. 193

It would indeed be strange if the information to be extracted from
a body of data concerning the relative merits of two hypotheses
should depend not only on the data and the hypotheses, but also -
on the purely external question of the generation of the
hypotheses. . .

—A. 'W. E Bdwards, Likelihood: An Account of the Statistical Concept
of Likelihood and Its Application to Scientific Inference, p. 30
. %

The likelihood principle implies . . . the irrelevance of predesigna-
tion, of whether an hypothesis was thought of beforehand or was
introduced to explain known effects. .

—Roger Rosenkrantz, Inference, Method and Decision: Towards a
Bayesian Philosophy of Science, p. 122
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IN APPRAISING METHODOLOGICAL RULES for scientific inference the norm-
ative epistemologist needs to assess how well the rules promote a given
experimental aim. It is entirely reasonable to expect that philosophical
accounts of hypothesis testing or confirmation should have something

to say in such a metamethodological assessment. T listed this task in.

chapter 3 as the third way in which accounts of hypothesis testing may
be applied in philosophy of science. A danger persists, however, that
.the view of testing appealed to in such a metamethodological appraisal
already embodies principles at cross-purposes with the aim underlying
the account to be appraised. This situation exists, I have already al-
leged, in Bayesian appraisals of the use-novelty (UN}) requirement. In
this chapter I shall give a full-blown justification for my allegation—
but that will be only my first stopping point on the way to a further
destination. Catching the Bayesians in this misdemeanor uncovers a
pervasive illicitness in the Bayesian Way of performing a methodologi-
cal critique. The problem, in a nutshell, is this: the underlying rationale
of a number of methodological rules is the aim of reliability or severity
in the sense I have been advocating, yet that aim runs counter to the
aim reflected in Bayesian principles. In section 10.3 I will explicitly
take up an éven more far reaching outgrowth of this recognition,
which explains the title of this chapter.

The intent of the title is not to suggest that all Bayesians are radical
subjectivists or strict Bayesians—but somewhat the opposite. What I
am arguing is that insofar as one accepts inference according to Bayes's
theorem, one is also buying into distinctive principles of relevant evi-
dence, hence criteria for inferences, hence grounds for judging meth-
odological rules. The key issue is the question of the relevance of error
probabilities. Accepting minimal Bayesian principles compels renounc-
ing standard error probability principles and their informal counter-
parts (¢.g., severity and reliability in our sense),

The conflict between these two sets of principles is familiar to phi-
losophers of statistics:

It seems that.the divisions in statistics result almost completely from
differences in attitude to the question of whether operating character-

istics of data analysis procedures are important or not. (Kempthorne
1972, 190)

Error probabilities are examples of operating characteristics of proce-
dures, and they are the linchpin of error statistics. The difference in
attitude reflects different principles for interpreting data. Given an ob-
served outcorne x the error statistician finds it relevant—indeed essen-
tial—to consider the other outcomes that could have resulted from the
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procedure that issued in data x. Those considerations are .mmmama wo
calculate error probabilities. Bayesian Emmwmﬁm]mﬁrocmﬁ it comes WE
many &mmHmE forms—must hold to the likelihood @E.uQE@ and this
leads to the irrelevance of such calculations. J ames wﬁmﬂ and Robert
Wolpert, in their monograph The Likelihood Principle {which they ab-
breviate as LP), assert that g

the philosophical incompatibility of the LP and the Wmacnuﬂmﬁ. Smé-
point is clear, since the LP deals only with the n.ucmm?ma X, s&;m Te-
quentist analyses involve averages over vomw.mu_m. owm.mj\msonm. ca
Enough direct conflicts have been . . . seen ”8 justify viewing the LP
as revolutionary from a frequentist perspective. (Berger and Wolpert

1988, 65-66)

I will be making use of their work in section 10.3. o

Despite these direct conflicts, particular error statistical EOanE,.m.m
often correspond to procedures Bayesians would nwcammm.ﬁn@ albeit
with differences in interpretation and in u.:mmmnmﬂo.u. .HEm mﬁmﬁmﬁ
overlapping of procedures is regarded by some as _umEE.Sm the signifi-
cance of the “philosophical” differences between mmﬁ&mbm mnm. error
statisticians on matters of interpretation and justification. .m<mﬁ in ﬁ.ro
apparent eclecticism of statistical practice, however, the issues of in-
terpretation and justification do not go away; and s&.mu it comes to
utilizing statistical ideas in philosophy of science, these issues are para-
mount—although they have generally been overlooked. Since philos-
ophy of statistics, in its formal guise, tends to occupy a rather separate
niche in philosophy of science, it is not surprising to mE.H that E.o&
philosophers of science are unaware that .&Q..m are two major .nObEnT
ing principles of confirmation, support, or testing. Nor is it obvious that
this conflict should be of any particular concern to philosophers.

Is it possible that a conflict that, strictly speaking, mﬂmﬂmﬁnm from
two opposed formal statistical schools could mr.ma any light upon the
problems still facing philosophers of science? Hm. it possible ﬂ.ﬁmﬁ. mmg as
the logical empiricist ways are being replaced with auomﬁuom::qﬁ " ones
that a fundamental principle of evidence and evidential appraisal is
still, unknowingly, retained? Is it possible that a good Qmm.m wm the debate
about methodological principles is rooted in the opposition between
two principles, made explicit in theories of statistics? The answer to all
these questions, I believe, is yes.

First I will illustrate how the novelty debate is skewed when seen
through Bayesian glasses. Then we will arrive, finally, at Ew Wm.mﬁ of
the conflict between error probability principles and the likelihood
principle. .
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10.1 NOVEITY AND SEVERITY THROUGH BAYESIAN GLASSES

Let us begin with the flaw in Bayesian critiques of arguments for the
UN requirement. While not immediately. obvious—at least it does not
seem to have been recognized-~the flaw is not difficult to spot, having
the results from the previous two. chapters under our belts.

In chapter 8, recall, the UN requirement was found to reflect the
desire to ensure that evidence counts as good grounds for H only to
the extent that it may be seen to constitute a good test of H, meaning
that the evidence stems from a procedure with a low probability of
erroneously passing hypothesis H—that is, one with high severity. I
then set out to evaluate how well the UN requirement accorded with
the aim of severe tests. I showed that while a test that violates the UN

requirement is assured of passing the hypothesis it tests, it does not

follow that it was assured of deing so whether or not that hypothesis is
false. In short, I showed the argument for requiring UN to be unsound
by showing that violating UN need not lead to viclating severity, de-
spite the fact that the intended aim of use-novelty is severity.

The Bayesian appraisal of accounts of novelty takes a very different
tack. To the Bayesian, it has been said, all things are Bayesian, and the
Bayesian appraisal of the UN requirement is a perfect illustration of
this. The Bayesian appraises the UN requirement according to whether
it has a rationale from #ts own vantage point of what counts as good
support for a hypothesis. Running the UN requirement through the
Bayesian machinery means asking whether satisfying UN is necessary
for Bayesian support.! Howson and Urbach (1989) make this Bayesian
strategy very clear. They note that although “the Bayesian theory of
support is certainly inconsistent with” the UN requirement,

there are arguments for the view, and these both sound convincing
and also number among their subscribers many if not most contem-
porary philesophers of science, We shall examine these arguments
now and show that their plausibility varishes on closer inspection.
(Howson and Urbach 1989, 276)

They get the plausibility to vanish only by changing the argument-—at
least as it is offered by the non-Bayesians they consider (e.g., Giere,
Glymour; Worrall). They change the argument by making the “closer
inspection” consist of an examination through a Bayesian magnifying
glass—through the Bayesian rule for support. I am not criticizing their

ﬂ.dﬁ:w@wmwmambmmwmmvozﬁmcvuoﬁam&m:rmbm_uoE good and bad tests
does not impede this analysis. :
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Bayesian scrutiny of the arguments ommHa.a E.\ oﬁ._.pma mﬁmamsm An.m.:
Redhead). I concur that attempts at Bayesian ucwsmmmsmﬁm om..dz SE
not wash. But aside from these few Bayesian exceptions, the “many if
not most contemporary philosophers of science” to ﬂ&nmw .moﬁmow and
Urbach refer are not giving Bayesian arguments for requiring UN. Here
is where the inappropriateness comes in. .

Whose Rule of Support?
According to Howson and Urbach,

attempts to show that data which hypotheses have vn.m.ﬂ mm:wmamﬁm:\

designed to entail, as opposed to independently Em&wsdm‘ do not

support those hypotheses fail. On the contrary, the condition for suppart,

that Ple | not-f) be small, may be perfectly well satisfied in many
Ple| H) . ]

such cases. (Howson and Urbach, 1989, 279; emphasis added; I re-

place their i with H)

The condition for support? So confidently do Bayesians speak of “the
condition for support” that the UN proponent may [orget to mmw
whether this was the intended condition when thinking that ﬂz is
required for a good test. If it is not, then the Bayesian criticism fails to
make a dent in the argument for UN. In fact, it is not. :

. First, let us be clear about the origin of this condition for mcg@ﬂ. .
It comes from the Bayesian condition that for mimmbnw ¢ to provide
support for hypothesis H the posterior vﬂowmg_.&\ of H given e must be
higher than the probability of H prior to e. That is, the posterior proba
bility of H must exceed the prior probability of H: :

Bayesian rule for mxnns.u. {first form): e supports H if P(H | e} is greater
than P(H). .
Although it is not immediately obvious, this rule is equivalent to the
requirement that e be more probable under A than under not-H. That
is, ’

Bayesian rule for support (second form): e supports hypothesis H if e is
more probable under A than under not-H.

Equivalently,?

:m. To see how the second form of the Bayesian rule of support falls out from
its first form, consider Bayes’s theorem and then calculate the ratio of P(H | ¢) and

P(H):
Ple | H) P(H)
Pie1 H) PU) + Ple | not-H) P(not-H).

PHe) =



324 CHAPTER TEN

e supports H if P(e | H) is gredter than P(e | not-H).

We Eim arrived at the rule for support to which Howson and Urbach
refer in m.um mwo.ﬁw passage. Let us get a little fancier. Let us abbreviate
the Bayesian ratio of support® for H as BR:
P{e | not-H) .

Ple | H)

BR:

We can then write what Howson and Urbach refer to as “the condition
woﬁ support” as the condition: e supports H if the Bayesian ratio BR is
less ”.w.mﬂ 1. The smaller the BR is, the greater the support for H. This
noum.Eon does not require the posterior probability to be Emr. just
that it be higher than the prior, . I

For the case where H is constructed to fit ¢, Howson and Urbach
suppose that H entails ¢ (hence Ple | H) = 1), s0 in considering their

discussion I will too. In that i
. . case, the Bayesian rule of
extremely simple: Y supportbecomes

Bayesian rule of En,ual where P(e | H) = H..
= 1: ¢ supports h i i
P(e|not-H) is less than 1. ’P ypothesis H it

It-is now easy to see, when the argument for the UN requirement is
mQ.E.EEmQ through Bayesian glasses, why the proponent of the UN
requirement appears to be claiming that violating UN leads to P(e | not-
H) being 1. Why? Because that is what it would mean for « Ba esian t
assert that no support accrues (when H entails e). ¢ °
H.Nmnmc that P{e | not-H) is our friend the Bayesian catchall *onH_.
?mnﬁo.ﬂ Pwv.. Calculating the Bayesian catchall factor {except s&mwm
not-A is a point hypothesis) requires prior probability mmﬁqumEm to

Then the ratio,

P(H|e) _ Ple | H)
P(H)  Ple| HYP(H) + P(¢| not-H) P(not-H)
1 .
Ple | not-H)
Ple| H)
This exceeds 1 just so lon ,
that P(H) = 1 — P(not-
8.

P(H) + _uﬁoﬁ-_E.

8 as the denominator is less than 1. And remembering
H), it is seen that this occurs whenever P(e¢ | not-H) < P(e

réowwwwwm .Ew Hw often om__aa.a.rm likelihood ratio but this is misleading since the
o Srmﬁﬂ invo d\_wa can be &mb.ﬁnmosm requiring averaging over prior probabili-
. am calling the Bayesian ratio of support is also called the Bayes’s factor

against &, but I did not want to conf i
e b but L use the BR sﬂw what I call the Bayesian factor
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all alternatives to H. But the non-Bayesian refuses to employ prior
probabilities. Nevertheless, this does not stop Howson and Urbach from
using this critique against non-Bayesian arguments for use-novelty.
From their Bayesian perspective, all that is needed to vitiate arguments
for requiring UN is that UN is not required for Bayesian support. For,
this it suffices to show that even when H is use-constructed, an agent
can assign the Bayesian catchall factor a value less than 1. And that is
what they do. . : .

Howson and Urbach most specifically consider Giere’s position,
which we are already familiar with, that evidence used to construct a
hypothesis has “no chance of refuting it.” In this connection, they con-
sider Giere’s discussion of Gregor Mendel. A constraint on Mendel’s-
model, says Giere, was to fit the evidence of the two-to-one ratio of
tall to dwarf plants. Thus, following the same patiern of argument ar-
ticulated in chapter 8, he considers that such a fit was assured even if
Mendel’s hypothesis had been false. Through Bavesian glasses, Giere
looks to be claiming that the Bayesian catchall factor is assured to be
1, and this Howson and Urbach deny: :

It is far from self-evident that Mendel’s data would not be improbable
were his own explanatton of them to be false; indeed, as that was the
only explanation which seemed plausible to Mendel, its falsity would
presumably render those data, were they assumed to be still conjec-
tural, relatively improbable as far as he was concerned. And this, as
we have seen, is sufficient for a Bayesian to be able to explain the
undoubted fact that Mendel himself took his data to be strongly con-
firmatory of his model. Giere has not justified his thesis—nor indeed could
he—that P(e | not-H) = I when H has been designed to explain e. (Howson
and Urbach 1989, 277; emphasts added. To be consistent with my
notation, I capitalize their lowercase # and use “not-H" rather than

~H.)

So it suffices to vitiate Giere’s argument, according to Howson and
Urbach, that as far as a.given agent is concerned there is no other plausible
explanation of the evidence. In fact, Bayesian support will accrue
(however small) so long as the subjective Bayesian catchall factor is
less than 1.* Thus it suffices for support that the agent believes there -
to be at least one alternative to H that does not make the evidence
certain! Since there is vast latitude to what agents can believe, their
dismissal of Giere’s argument is simplicity itself.

4. There are really two mistaken assumptions in this Bayesian critique of
Giere: that the probability of concern is the Bayesian factor on the catchall and that
- subjective probabilities are relevant.
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. But it has nothing to do with Giere’s argument. Admittedly, Giere
is careless in stating what he regards as the intended rationale for UN,
but, having acknowledged that he is a non-Bayesian, it is odd that
Howson and Urbach suppose that a subjective Bayesian analysis has
relevance. They disregard Giere’s warning that ,

it is crucial to remember that the probabilities involved are physical
probabilities inherent in the actual scientific process itself. If one ships

into thinking in terms of probability relations among E%oﬁ.smmmw‘ or
between evidence and hypotheses, one will necessarily misunder-

stand this account of the nature of empirical testing. In particular, one

must not imagine that to estimate the probability of [a failing result]

one must be able to calculate the probability of this result as a-
weighted average of its probabilities relative to ail possible alternative

theories. No such probabilities are involved. (Giere 1983, 282-83)

gmwm:wm:mwamnam:wroémoémommﬂmdﬂvwﬁrnonmﬁznEm?og-
bilistic claim in Giere’s argument. o .
Now it is true that Giere’s argument for the necessity of UN is un-
sound (as I argued at length in chapter 8), but not for the reason the
Bayesian alleges. The difference is altogether crucial. The proponent of
the S.A_ requirement is not at all claiming that violating UN precludes
Bayesian support (whether subjectively or objectively interpreted)!
The concern, rather, is with violating the severity requirernent. And
Bayesian support is easy to obtain even where severity is violated.

Low or Minimally Severe Tests Can Satisfy the Bayesian
Reguirement for Support :

Obm way of making this point clearer is to consider a restricted
version of the UN requirement, which does hold:

Restricted UN requirement: Data used to arrive at and test a use-
constructed hypothesis cannot count as a good test of that hypothesis

.m m.:wamwmmEmrEova::\Howﬂvmmmwnmmogomcn:E%oEanmﬁ:
if it is false. ,

This is, of course, just an instance of the severity requirement: any test
.meﬂ Enwm severity is a poor one, and in some cases violating UN makes
it casier to carry out strategies that hinder severity. Equivalently, the
restricted UN réquirement says that a use-constructed E%oﬁcmww is
poorly supported or poorly tested by evidence if the use-construction
rule is one of the unreliable ones. In the exireme case of a gellerized
rule, there is no test, and so no genuine support at all,

. The existence of highly unreliable use-construction Eonmm:__.mm
is the reason that many are led to uphold the UN requirement and
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eschew “double counting” of data. Admittedly, as we saw in chapter
8, it is really only the restricted UN requirement that is warranted.
Nevertheless, Howson and Urbach’s Bayesian argument against the
general UN requirement goes through just as well for this restricted
UN requirement. Another way to put this is that even when severity is
low or zero, the condition for Bayesian support can be satisfied. Hence
finding Bayesian support still available simply cuts no ice with an
error-severity person. Satisfying Bayesian support is not sufficient for
severity. : .
This is obvious where calculating the Bayesian ratio (BR) is subjec-
tive, that is, where the reason the Bayesian support ratio is small is
that the agent simply believes evidence e to be incredible under alter-
natives to H. However, minimally severe tests can muster Bayesian
support even if the BR is determined by objective likelihoods from a
probability model. :

Maximally Likely Alternatives Again

We have already seen several examples that would show this. Re-
call our discussion of maximally likely alternatives and the problem of
underdetermination in section 6.5. Let H, be the null or test hypothe-
sis; and H an alternative hypothesis. The Bayesian condition of support
for H is satisfied so long as H makes ¢ more probable than does Hy—so
long as the Bayesian ratio BR is less than 1. Here the BR equals

Ple| H,)

Ple|H)'

But one can always find such an H (so long as H, does not give e probabil-
ity 1). One simply uses evidence e to construct or select an H that per-
fectly fits the evidence e. Support would thereby accrue to H, even
when the restricted UN requirement would be violated. The extreme
example of gellerization could illustrate, but so could less artificial ex-
amples such as those from “humnting for statistical significance,” dis-
cussed in chapter 9 (especially in section 9.2).° ,

5. To see how the gellerized process in example 6.1 would do to make this
point, note that the severe testing theorist would describe the process this way:
Observe the outcome ¢, find a hypothesis G{e) that makes ¢ maximally likely, and
then deem G{e) supported by e. (Whether one goes on to measure the support is
irrelevant.) Although the particular hypothesis erected to petfectly fit the data wilt
vary in different tiials, for every data set some such alternative may be found.
Therefore, supporting the maximally likely hypothesis constructed is assured, even
if that hypothesis is false. .

Teddy Seidenfeld clued me in to a nifty real-life example from sports that offers
a different kind of illustration. A person who wants to show he has a system for
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Hunting Again.

To see how the Bayesian rule accords support to a hypothesis that
an error theorist would consider poorly tested, we can recall the strat-
egy of hunting used in the study of infant training discussed by Kish
{1970) and detailed in section 9.2. For simplicity, consider that a single
infant training experience is of interest, early weaning. Suppose that
the procedure is to search among 100 factors for 1 that is highly corre-
‘lated with having been subjected to early weaning. Say that such a

correlation is found between early weaning and a tendency toward.

shyness in older children. Qutcome e is the difference between the pro-
portions of the early weaners and the late weaners who are or claim
to be shy. Hypothesis H, asserts that the observed correlation between
early weaning and shyness is spurious, or due to chance. The proce-
dure will test hypothesis H, only upon finding an e that is very improb-
able given that H, is true—so the numerator of the Bayesian ratio is
small. For example, the difference sought may be required to be at
least 2 standard deviations {corresponding to the .05 “computed” level
of significance). The alternative H may assert that the correlation is real
and in the direction observed:

H: Rarly weaning is correlated with shyness in young children.

Hypothesis H is deliberately chosen or constructed so that the denomi-
nator of the BR, P{e{H), is high (perhaps maximal). The evidence is far
more probable given hypothesis H than given the null hypothesis H,.
Notice the similarity between the improbability of the particular e
given the chance hypothesis H, and the small “computed significance
level” in the last chapter. The probability of this particular outcome e—
a high correlation between early weaning and shyness—is very low
given the null hypothesis H,. The alternative—by design—makes this
observed correlation highly probabie. So the Bayesian rule of support
is satisfied—indeed, it is well satisfied, since the ratio is not just less
“than 1 but very small. - .
Such an example reveals in no uncertain terms the mistake that

has gone unchecked in Bayesian reconstructions of non-Bayesian ar-
guments. The mistake stems from the fact that satistying Bayesian sup-

predicting the winning slate in a football series offers this “test”: If the list of win-
ners he sends you at the start of the season turns out t6 be correct, then it is re-
garded as good support that his system really works. However, each possible per-
EEm.aou of winners is sent to a different sports fan, so his system is assured of
acquiring high support (by someone) even if his system has no predictive ability
beyond mere guessing. . .
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port is not sufficient for satisfying severity. That a methodological rule
is not required for Bayesian support does not license inferring that the
rule is not required for non-Bayesian measures of support—such as
those based on error probabilities.

Satisfying Severity versus Satisfying Bayesian Support

1t will be useful to recapitulate the distinguishing feature of a se-
verity calculation by way of the Bayesian rule of support (that e sup-
ports H if the BR is small). In appraising such a rule, the error statisti-
cian is concérned with its behavior under repetitions. With respect to
the case being discussed, the severity criterion requires asking how of-
ten the rule would award support to hypotheses about the effects of
infant training on personality, even if they are false and there is no real
difference in personality traits among those subjected to the different
infant training.’ We can answer this question by viewing the Bayesian
ratio BR as a statistic, a function of the data. For each trial of the experi-
ment the BR takes some value. So long as the BR is less than 1, support
accrues to the use-constructed alternative H, but we are imagining that
the rule is even more demanding: the BR must be very small. Severe
testers want to know how often such strong support would accrue for
some nonchance hypothesis (between infant training and personality).
or other, even if H, is true. And they want to know this even after the
result is in and a particular value for the BR has been calculated. With
100 different tests, it is highly probable that at least one 2-standard-
deviation difference would be found, even if all the null hypotheses -
were true,” The severity of the test that H passes is 1 minus this, and
thus is very small, practically 0. Although the probability of any particu-
lar statistically significant result is lJow, the probability of some high
correlation or other is high.

To answer the severity question, the error statistician needs to con-
sider something that from the Bayesian standpoint is irrelevant—the
behavior of the statistic (in this case the BR) in a series of (real or -

~ hypothetical) repetitions. This is the experimental distribution of statis-

tic BR. {Precisely why it is irrelevant for the Bayesian will be taken up
in section 10.3.) Such considerations, in the view of the érror statisti-
cian, are necessary to scrutinize the Bayesian. procedure of assessing

_ support by calculating the BR.

6. Since this is an example of the type where the hypothesis selected for testing -
can vary, the severity criterion becomes SC with hypothesis construction (defined
in section 6.6).

7. Applying the calculation discussed in chapter 9, the probability is about .99.
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Sum-Up

We have shown in this section that the Bayesian rule of support is
unreliable in the sense that it allows support to accrue to hypotheses,
with high probability, even if the hypotheses are false. True, merely
satistying the rule of support does not say that the posterior probability
of H is high, nor that the increment in the posterior is large. It says
merely that some support accrues to H; it may, depending on the prior
probabilities, be tiny. But that is the Bayesian condition for support that
Howson and Urbach use to denounce arguwments for the UN requirement.
Hence it is appropriate for us to consider it in questioning their denun-
ciation. Moreover, it makes sense for them to consider the minimal
requirement for support because that is what they regard as being chal-
lenged by the claim that UN is necessary. What I have shown is that
their criticism is unsound because satisfying Bayesian support does not
entail satisfying severity. And all T claim to be doing just now is dis-
counting this Bayesian criticism.

It may be objected that T am m<mEm~Em the Bayesian criterion of
support from an error probability {e.g., severity) stance. That is exactly
right. It is entirely appropriate to do this in answering Bayesian cri-
tiques of the novelty requirement, because the aim of novelty is se-
verity.

Novelty through Bayesian Glasses

Since the UN requirement reflects a concern about error-severity,
it is easy to see why the Bayesian concludes that the novelty require-
ment will not hold up. The point is made informally by remembering
what was said about Bayesian philosophers being descendants of hold-
ers of “logical theories” of confirmation. Like the logical theorists be-
fore them, those who assess the import of evidence by way of the
Bayesian ratio regard as irrelevant how the hypothesis was generated.
(There are also prior probabilities, of course, but these are separate
from the import of the evidence for support.) The Bayesian support
ratio BR, which is how the import of the evidence comes through for a
Bayesian, is unaffected by the manner of hypothesis generation. Hence
Howson and Urbach’s (1989) assertion that “the Bayesian theory of
wﬂwﬂ%oﬁ is certainly inconsistent with” the novelty um@zﬁﬁbmbﬁ (p-

Not all Bayesians deny the UN requirement, but wcﬁw supporters
and detractors share the assumption that what has to be shown or
denied is its bearing on the Bayesian measure of support (the Bayesian
support ratio). To be fair, the reason for this is not just the Bayesian
tendency to appraise all principles of evidence according to the Bayes-
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ian formula. In this case, non-Bayesian UN proponents have uncon-
sciously opened up their argument to Bayesian scrutiny by making
ambiguous statements about the grounds for requiring UN. (We saw

this in discussing Worrall and Giere in section 8.3.) What UN propo-

nents have failed to-see or failed to state unequivocally is that the rai--
son d’étre for the use-novelty principle has to do with severity—in our
non-Bayesian sense. To think that severity matters is to think that test

_results cannot be appraised without considering the error properties of

the entire procedure from which the results arose—the very properties
that Bayesians are happy to declare irrelevant.

‘Bayesian Ways to Make Novelty Matter

If violating novelty is not relevant to Bayesians, then they are faced
with the problem of accounting for scientific cases where it does seem
to have mattered. It is open to the Bayesian to propose the classic
Bayesian move. Any scientific appraisal that you think turned on the
mode of hypothesis construction {and a concern with the correspond-
ing lack of severity or reliability), the Bayesian may allege, can be re-
constructed as having turned on some difference in prior probabilities.
Indeed, any time there is a difference in the appraisal of two hypothe-
ses that entail (or equally fit) evidence, the Bayesian must locate the
source of the difference in the priors. There is no place else to locate the-
difference in the Bayesian algorithm. Granted, with given assumptions
about one’s prior probabilities in hypotheses, some, though not all, vio-
lations of severity can be made to correspond to tests that are poor or
comparatively poor on Bayesian grounds. Even so, the Bayesian recon-
struction EnoHHmQE Jocates the actual rationale for disparaging these
tests,

Various mzms::m in which, through just the right mmmggvﬁosm and
‘prior probabilities, use-novel hypotheses receive higher Bayesian sup-
port than use-constructed ones include Campbell and Vinci 1983;
Howson and Urbach 1989; Maher 1988, 1993¢; Redhead 1986; and
Rosenkrantz 1977. Regrettably, my remarks on them must be brief.

“These attempts, if they are not guilty of mistakes about probabilities,

err in one or both of two ways: either (1) they violate the likelihood
principle? or (2} they fail to capture the actual episternological rationale
for why certain violations of use-novelty are taken as problematic and

“why they should be.

8. The arguments between Maher and his critics Howson and Franklin (1991)
really tumn on this issue, although the debate has not been framed in these terms.
Maher needs to appeal to the idea of the reliability of the method by which hypoth-
eses are generated, Such an idea finds its home in error-statistical not Bayesian ac-
counts,
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My basis for (2) is that the problem caused by unreliable use-
construction procedures is not a problem about prior degrees of belief
in hypotheses. To underscore this point, consider a single hypothesis
s0 that the problem cannot be traced to prior probability assignments.
A hypothesis that might do is one we saw in the example with which
I began our discussion of novelty—the bombing of the World Trade
Center. Let hypothesis H assert that group X drives into the garage at

. the given time and explodes the bomb. When advanced before the
bombing, H passes a (relatively) severe test. The probability that the
before-the-fact description of the bombing would have fit the actual
facts so well if H were false is low. In contrast, hypothesis H does not
pass a severe test when advanced after the details of the bombing have
been reported. Being able to come up with a hypothesis that fits the
reported occurrence is precisely the sort of move that is open to anyone
who wants to assign credit for the bombing, even though the alleged

group had nothing to do with it. At the stage that we disparage the .
after-the-fact calls claiming responsibility for the bombing, boﬁ.znm has

been done to rule out this error.

More generally, the difference in the evidential import of two
pieces of evidence, both of which fit hypotheses equally well, is located
in a difference in the reliability of test processes. This is where the error
statistician locates it. The Bayesian desiring to make out a difference
locates its source elsewhere (depending on which attempt one consid-
exs). For this reason, error statistical criteria match our intuitions about
differential support better than Bayesian ones.

10.2 THE Orb EVIDENCE PROBLEM

The position that how or when a hypothesis is generated is irrelevant
to a Bayesian may seem puzzling in the light of what has been said
about Bayesians having an “old evidence” problem. The puzzle results
because, whereas for most Bayesians novelty never matters to support,
for a few others it always does! These other Bayesians are said to have
an old evidence problem.

An account is said to have an old evidence problem if it has the
consequence that old or known data fail to count as evidence in sup-
port of a hypothesis (it requires temporal novelty). As critics of tem-
poral novelty show, this conflicts with many cases where known
evidence is regarded as providing excellent support for hypotheses.?

9. We have shown (in nbmﬁﬁnnm 8 and 9) that nonﬁmi to what some have
claimed, Neyman-Pearson statistics does not have an old evidence problem.

WaY YOU CANNOT BE JUST A LITTLE BIT BAYESIAN 333

Why is the subjective Bayesian supposed to have an old evidence

problem?
The allegation, brought to the forefront by Qﬁﬁo& {1980), goes.

like this: if probability is a measure of degree of beliet, then if an agent
already knows that e has occurred, the agent must assign P(e) the value
1. Hence P{e | H) is assigned a value of 1. But this means no Bayesian

support accrues from e. For if P(¢) = Ple | H) =1, then P(H | ¢} = P(H).

The Bayesian condition for support is not met.

Another way of phrasing the problem is that if evidence e is known
and so assigned a probability of 1 by an mmmﬁ then the agent also
assigns a probability of 1 to the Bayesian catchall factor, that is, P{e |
not-H) = 1. So, the BR equals 1, and no Bayesian support accrues to H.

How do subjective Bayesians respond to the charge that they have
an old evidence problem? The standard subjective Bayesian response
is given by Howson and Urbach (1989) and by Howson (1989).

It has been argued (e.g., by Glymour . . .) that since e is, by assump-
tion, known at the time h is formulated, its probability must be 1, so.
that P{e | ~h) = 1 also. . . . But is it? If Glymour is right then P(e | ~h)
would be 1 even if b had not been constructed to explain e, ifeisa
known fact, and so e would not support h in this case either. But
Glymour is not right. . . . The Bayesian interprets P(e | ~h) as how .
likely you think e wonld be were h to be false. . . . On this construction
the value of P{e | ~h) is independent of whether h was or was not
constructed to explain e. (Howson 1989, 386)

But many people—Bayesians included—are not too clear about how
this “would be” probability is supposed to work.

Consider the known evidence in the Brownian motion example
(chapter 7). Brownian motion was known before formulation of
the Einstein-Smoluchowski theory. To assess the support that this
phenomenon affords this theory, the subjectivist imagines Perrin or
some other agent mmwim something like this: How probable would I re-
gard the phenomenon of Brownian motion, were the Einstein-

- Smoluchowski theory false? If the agent thinks that H is the only plau-
sible explanation of Brownian motion (e), he or she may well think the
occurrence of the phenomenon very improbable in a world in which H
were false. So the agent may well assign a small, and not a maximal,

“value to P{e | not-H). If we ask how the agent figures out this probabil-
ity, Howson and Urbach will say {(recall chapter 3), it is not our job. “We
are under no obligation to legislate concerning the methods people
adopt for assigning prior probabilities” (Howson and Urbach 1989,
271). . :
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It is pretty clear that an agent would not want to assign a probabil-

ity of 1 to known evidence because the evidence is always known by

the time Bayes’s theorem is applied. Glymour’s “mistake,” according to
Howson and Urbach, is in supposing that probability assignments are
to be relative to the totality of current knowledge. In fact, “they should
have been relativised to current knowledge minus e” (p. 271):

Once ¢ has become known . . . the probabilities P{e | &), P(h), and P(e)
... are relativised to the counter-factual knowledge state in which
you still do not know ¢, (B 271}

In their view, the support that ¢ gives to H is to be computed by consid-
ering how knowledge of ¢ would alter one’s degree of belief in H, on
the supposition that one did not yet know .1

Counterfactual Degrees of Belief

The need to consider an agent’s counterfactual knowledge state
while still keeping assignments coherent is fraught with problems,
many of which Glymour discusses (e.g., Glymour 1980, 87-91). Does
one try to go back in time, and if so how far back? Were the counterfac-
tual knowledge view taken seriously, says Glymour,

we should have to condemn a great mass of scientific judgments on-
the grounds that those making them had not studied the history of
science with sufficient closeness to make a judgment as to what their

degrees of belief would have been in relevant historical periods. (Gly-
mour 1980, 91)

What if we stay in the present but imagine subtracting out the knowl-
edge of ¢? That seems silly and hardly an easier feat. In this view, for
Einstein to assess the evidential bearing of the perihelion of Mercury
on the relativistic theory of the gravitational law, he needs to imagine
whether there would be an increase in his assignment of probability to
the law had he not already known of the perihelion phenomenon.
However, as Earman (1992} nicely points out, Einstein developed the
theory hoping to account for just this phenomenon; had he not known
about it, perhaps he would not have developed the theory. “And if
someone else had formulated the theory, Einstein might not have
taken it seriously enough to assign it a nonzero prior” (p. 123). In any

10. Paul Horwich has a somewhat different tactic for am&wmm with this prob-
lem. He seems 1o allow that the probability of known evidence ¢ equals 1, but
maintains that a Bayesian should assess how much ¢ would alter our degree of
belief assignment to H relative to “our epistemic state prior to the discovery” of e,
when its probability was not yet 1 (Horwich 1982, 53)

were unknown to him.
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event, a scientist does not actually assess the import of the evidence ¢
in hand by imagining the probability change that would obtain if e
The problem of assigning counterfactual degrees of belief also
makes it difficult to carry out Bayesian reconstructions of scientific epi-
sodes, upon which Bayesianism’s usefulness to the philosophy of sci-
ence depends. The Bayesian “solution” to Duhem’s problem (recall
chapter 4) requires the philosopher to assign probabilities so as to re-
flect the beliefs actually held by given scientists. But are philosophers
in a position to follow Dorling’s suggestion that we consider the betting
odds a typical scientist would have been willing to place on e, assuming
that ¢ had not yet been discovered? (Dorling 1979, 182). Even if one
could arrive at such a counterfactual probability assignment, the
deeper question remains: why is it relevant to either making or scruti-
nizing a scientific inference from evidence e? - -
Take the example of the World Trade Center bombing. In the
“imagine tHe evidence is not known yet” view, to assess the support to
give a hypothesis H about the group responsible for the bombing—
where this hypothesis is called in after the fact-—I must consider how
the evidence of the explosion would have altered my belief in H if I
did not yet know of the explosion. I am to be just as impressed when
nonnovel evidence fits a hypothesis as I am when novel evidence fits
it. The reliability of the use-construction method does not enter. At the
end of 1994 I enjoyed fitting the data on profitable stocks over the past
twelve months into a highly profitable strategy for buying and selling
during that time. Would the Bayesian assess how well these data sup-

. port my system in the same way had 1 advanced it at the end of 19937

Yet isn't that what pretending you didn't yet know the data would
seem 1o countenance? _

The most satisfactory Bayesian way around the old evidence prob-
lem, in my view, is for the Bayesian to restrict the probability assign-
ments to specific statistical models of experiments and generic out-
comes of those experiments. For example, the probability of heads on
a toss of a fair coin is one-half, independent of anyone knowing the
outcome. Presumably, this is the “objective” Bayesian solution. This
would considerably limit the scope of the Bayesian account in philos-
ophy of science, and the problem of prior probabilities of hypotheses
would remain. . . .

Although there seems to be no single agreed-upon sohition to the
old evidence problem, some such solution is assumed by the generally
accepted Bayesian position on novelty described in section 10.1: nov-
elty (temporal and use-novelty)—in and of itself—never matters to
support. | ‘
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Garber’s and umqw@.w Way

The Bayesian rejection of the UN requirement may be put this
way: an argument showing that violating UN precludes Bayesian sup-
port would also show that known evidence in general precludes Bayes-
ian support (leading to the old evidence problem). There are a few
Bayesians, however, who want to accept the UN requirement, yet get
around the old evidence problem—even if this requires changing rthe
probability axioms.

This way around the old evidence problem, developed by Daniel
Garber, Clark Glymour, Richard Jefirey, and others, reflects the idea
that even old evidence can be made to support H, as long as the fact
that H entails ¢ is new. This attempt requires altering the axioms of the
probability calculus relative to one’s knowledge. For example, instead
of stipulating that all tautologies have probability 1, the assignment
Socﬁ be relativized to knowing it to be a tautology. (Bssentially the
same idea was originally developed by L. J. Good, but for a different
reason.) The problems that such attempts raise for Bayesians will not
be gone into here.!! They make confirmation even more a matter of
_“,.:E.mnaﬁ‘ psychological beliefs than traditional subjective Bayes-
fanism, .

Note mainly that accepting the Garber-Jeffrey way out of the old
evidence problem takes us right back to the problem of use-novelty.
With a use-constructed hypothesis H it is known that # entails or oth-
erwise fits e, so it is not saved from the chopping block that spares
cases in which the entailment is unknown. Those who appeal to such
accounts to solve the old evidence problem start out assuming the posi-
tion that violating UN always precludes support. Take Garber:

Suppose that S constructed h-specifically to account for e, and knew,
from the start, that it would. It should not add anything to the credi-
bility of h that it accounts for the evidence that S knew all along it
would account for. (Garber 1983, 104})

There is no atterpt to justify this on Bayesian principles. It is hard to
see how it could be so justified since, as Bayesians are quick to show,
the UN requirement violates the likelihood principle. Moreover, as I
mwmcma_ms chapter 8, the position that violating UN precludes support
is untenable: it would rule out many cases with excellent and even
maximal support (as in estimation technigues). It seems hardly worth
changing the probability axioms only to be left upholding this position.

Regardless of how Bayesians settle this family quarrel about how

11. See for example, Miller 1987, 305-8 and Earman 1992.
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best to deal with old evidence, the problem only furthers my criticism
of Bayesian critiques of methodological principles: methodological
principles are often based on non-Bayesian ideas about error probabili-
ties, and these ideas run counter to a fundamental Bayesian principle,
the likelthood principle. If we are to use ideas from statistics to obtain
a philosophical understanding of reasoning in science—something 1

‘heartily endorse—then we need to be very clear on the fundamental

differences between Bayesian and error-probability approaches. That
is the purpose of the next section. :

10.3 THE LIKELIHOOD PRINCIPLE {LP) AND STOPPING RULES

One of the claims [of the Bayesian approach] is that the experiment

matters little, what maiters-is the likelihood function after experi-

mentation. . . . It tends to undo what classical statisticians have been

preaching for many years: think about your experiment, design it as
best you can to answer specific questions, take all sorts of precautions

against selection bias and your subconscious prejudices. {LeCam

1977, 158) _

Why does embracing the Bayesian position tend to undo what classical
statisticians have been preaching? Because Bayesian and classical stat-
isticians view the task of statistical inference very differently.
In chapter 3 I contrasted these two conceptions of statistical infer-
"ence by distinguishing evidential-relationship or E-R approaches from
testing approaches, and explained why E-R approaches in general, and
the Bayesian Way in particular, have appealed more to philosophers
than classical testing approaches. The E-R view is modeled on deduc-
tive logic, only with probabilities: In the E-R view, the task of a theory
of statistics is to say, for given evidence and hypotheses, how well the
evidence confirms or supports hypotheses (whether absolutely or com-
paratively). There is, I suppose, a certain confidence and cleanness to
this. conception that is absent from the error-statistician’s view of
things. Error statisticians eschew grand and unified schemes for relat-
ing their beliefs, preferring a hodgepodge of methods that are truly
ampliative. Error statisticians appeal to statistical tools as protection
from the many ways they know they can be misled by data as well as
by their own beliefs and desires. The value of statistical tools for them

~ is to develop strategies that capitalize on their knowledge of mistakes:

strategies for collecting data, for efficiently checking an assortment of
errors, and for communicating results in a form that promotes their
extension by others.

Given the difference in aims, it is not surprising that information
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relevant to the Bayesian task is very different from that relevant to the
task of the error statistician. In this section I want to sharpen and make
more rigorous what T have already said about this distinction.

The different positions staked out by error statisticians and by
those who accept the likelihood principle (e.g., Bayesians), it should
by now be clear, are not only of concern to philosophers of statistics.
This opposition, I have been urging, while crystallized in formal statis-

. tical principles, is implicated, if only informally or implicitly, in a clus-
ter of disputes in philosophy of science. Overlooking this distinction in
underlying principles, we saw in section 10.1, has permitted what are
essentially question-begging appraisals of methodological rules to go
unchallenged. Further, the secret to solving a number of problems
about evidence, I hold, lies in utilizing—formally or informally—the
error probabilities of the procedures generating the evidence. It was
the appeal to severity (an error probability), for example, that allowed
distinguishing among the well-testedness of hypotheses that fit the
data equally well (the alternative hypothesis objection, chapter 6).

Having been reminded of the philosophy of science ramifications
of the dispute between opposing statistical philosophies, I want to re-
visit that dispute, but this time I want to go deeper into its core.
Whereas in thinking of the key difference between Bavesians and error
statisticians one most often thinks of the former’s willingness to assign
prior probabilities to hypotheses and the latter’s insistence upon meth-
ods that do not require such assignments, the difference T now want
to concentrate on is more fundamental. In this place, more than any
other, one can see the chasm that divides the Bayesian from the
error-statistician. . :

Stopping Rutles

Let me begin with a question, as I did with hunting for statistical
significance in chapter 9. The situation now resembles that case, but
instead of hunting for a statistically significant property, we will imag-
ine that the researchers have an effect they would like to demonstrate,
and that they plan to keep experimenting until the data differ statisti-
cally significantly, say at the .05 level, from the null hypothesis of “no
effect.” (In other words, the researchers keep going until they get a 2-
standard-deviation difference: .05 is the computed or “nominal” level of
significance.) We can call this a “try and try again” procedure. The ef-
fect may be anything one would like to consider—that a subject can
do better than chance at guessing an ESP card, that one treatment does
better than some other (with regard to some symptom), that the dis-
_crepancy from some parameter value is real—or any of the other kinds
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of examples we have considered. You are presented, say, EEJ the sta-
tistically significant data ultimately arrived at. The question is whether
it is relevant to your appraisal of the effect that the data resulted from
the try and try again procedure. .

For a simple example, imagine a subject of an ESP experiment,
Zoltan. During each trial of the experiment Zoltan must predict ahead
of time the next ESP card in a deck of cards. Suppose that after a long
series.of trials Zoltan scores a relative frequency of successful predic-
fions that exceeds the relative frequency expected by chance alone by
an amount sufficient to attain a .05 significance level. Would it be rele-
vant to your evaluation of the evidence if you learned that Zoltan had
planned all along to keep running trials for as long as it took to reach
the {computed) significance level of .05? Would you find it relevant to
learn that after, say, 10 trials, having failed to rack up enough successes
to reach the .05 level of statistical significance, Zoltan went on to 20

. trials, and failing yet again he went to 30 trials, and then 10 more, and

on and on until, say on trial 1,007, he finally attained a statistically
significant result? o

A plan for when to stop an experiment is called a stopping ntm..mo
my question is whether you would find knowledge of the stopping
rule relevant in assessing the evidence from a statistical test. If you
would you are in good company, for that is how standard error statis-
tics answers the question. From the Bayesian point of view, however,
you are incoherent!

The Likelihood Principle

Having alluded more than once to the likelihood principle (LF), I
will now say more specifically what it asserts.’* The LP is regarded as
having been articulated by non-Bayesian statisticians, principally
George Barnard (1947) and R. A. Fisher (1956). But, as it is their prin-
ciple now, I will let the Bayesians do the talking.'®

In their classic piece, Edwards, Lindman, and Savage (1963) spell
out the LP as follows. They consider two experiments involving the
same set of hypotheses H, up to H,. Let D be an outcome from the first

12. There is also something called the “weak likelihood principle,” but &E.H.
that is not in dispute between Bayesians and error statisticians I will not discuss it.

- Richard Miller (1987} tses the term to mean something different. What he has in

mind is a principle sometimes called the law of likelihood (e.g. by Hacking; noted
in section 6.6). The formal likelihood principle should not be confused with these
other notions.

13. I do not think there are more than a handful of non-Bayesian (“likeli-
hoodists”} who still accept the LP. i -
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experiment and D' from the second. They ask, “Just when are D and
D' thus evidentially equivalent, or of the same import?” {p. 237). Their
answer is when, for some positive constant k,

P(D"|H) = kP(D| H)

for each i. That is, D and D’ are evidentially equivalent whern the likeli-
hood of H, given D is a multiple of the likelihood of H, given D’. That

.is because the posterior probabilities of the hypotheses come out the
same, as the interested reader can check.

A reminder: P(D | H) is called the likelihood of H, but for a non-
Bayesian this can be calculated only where H is a stmple statistical hy-.
pothesis—not a disjunction. That is why, for example, where we con-
sidered P(D | not-H), we gave it a different name (the Bayesian catchall
factor). In discussing the LP, however, the Bayesian often wishes to
identify a conflict between Bayesian and non-Bayesian treatments of
evidence. To demonstrate this conflict the Bayesian has to consider
only examples in which P(D| H) is calculable for a non-Bayesian, that
is, where these likelihoods are calculated the same way for Bayesians
and non-Bayesians. T will also maintain this restriction.

To this end, the LP is often stated with reference to hypotheses
about a particular parameter ., such as the probability of success (on
a Binomial trial} or the mean value of some characteristic. L. J. Savage

(1962) states it this way, where x and y (rather than D' and D) now
refer to the two results:

According to Bayes's theorem, P(x | u} . .. constitutes the entire evi-
dence of the experiment, that is, it tells all that the experiment has to
tell. More fully and more precisely, if y is the datum of some other
experiment, and if it happens that P(x | n) and P(y | p) are propor-
tional functions of . (that is, constant multiples of each other), then
each of the two data x and y have exactly the same thing to say about
the values of p. (P. 17; I substitute P for his Pr and p. for his \)

It is a short step from this reasoning to see the conflict with classical or
“orthodox” theory. As Lindley (1976) puts it,

we see that in calculating [the posterior], our inference about p, the
only contribution of the data is through the likelihood function. . . .
In particular, if we have two pieces of data x, and x, with the same
likelihood function . . . the inferences about p from the two data sets
should be the same. This is not usually true in the orthodox theory, and its
falsity in that theory is an example of its incoherence. (P. 361: emphasis
added. I replace his ¢ with p)" T

14, Where the likelihoods are proportional for the hypotheses under consider-
ation they are sometimes said to be the same likelihood function. That is how
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Savage's Message at the 1959 Forum |

It was this conflict that was EumeB.oﬁ in Savage's BE& when i
1959 he led a forum attenided by several leaders in statistics. He de-
clared:

In view of the likelihood principle, all of these classical statistical Eam.m
come under new scrutiny, and must, I believe, be abandoned or seri-
ously modified. (Savage 1962, 18) ,

Attendees at this foram included P. Armitage, L J. Good, G. wmgm.&ﬁ
M. S. Bartlett, E. . Pearson, D. Lindley, D. R. Cox, and others, repre-
senting a mixture of statistical schools. Savage mbbowunma to this dis-
tinguished group that all the classical statistical notions—all the no-
tions under “error statistics”—significance levels and tests, noﬁ%mmsnm
levels and interval estimates, criteria based on error Eoggrnmml..m_w
are suspect. They are suspect because they come into conflict with
the LP. L

The conflict is most pronounced, Savage explains, on the H.m_gm;n.m
of stopping rules. While it is widely held that mp.m import of the evi-
dence depends on the stopping rule in examples like the one m_uo.,a\ in
fact, Savage warns, this violates the LP. The LP tells you that it can.
make no difference to the import of evidence whether the expert-
menter had planned to “try and try again” until a {computed) .05 sig- -
nificant result is achieved, or whether the experimenter had planned
to run just one experiment, with some fixed sample size, and let ﬂ‘.ﬁ
.nEwm fall where they may. Let us refer to the former, try m.wa try again
plan, as the optional stopping plan, and the latter, prespecified plan as
the fixed sample size plan. Why, according to the LP, does a result have
exactly the same thing to say about when generated %E.Emw op-
tional stopping as when generated through a fixed sample size plan?
Because the probabilities of the results from the two experiments .
(given p)—t.e., the likelthoods—are proportional to each other. |

Zoltan's 1,007 trials—whether by optional stopping or fixed sam-
ple size—consist of a string of k successes and 1,007 — .w failures. It can
be pictured as a string of 1,007 ss and fs, such as :

SSSSIILSfEs S o

This string is the outcome x. The hypothesis of interest is a Wﬁuo@.h.
sized value for p—the probability of success on each trial. The vomﬂmdoH
probability accorded to p. with either experimental plan is a function of
the prior probability and the likelihood, P(x | p). And in both cases,

Lindley is using “same likelihood function” here. It wilt be less confusing to just say
that their likelihoods are proportional.
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Pix| p) = RE1 =~ w)'977* That is, the data x enter into the Bayesian
computation the same way whether they arose from the optional stop-
ping plan or the fixed sample size plan. :

In general, suppose that you collect data of any kind whatsoever—
not necessarily Bernoullian, nor identically distributed, nor indepen-
dent of each other ... —stopping only when the data thus far col-
lected satisfy some criterion of a sort that is sure to be satisfied sooner
or later, then the import of the sequence of # data actually observed
will be exactly the same as it would be had you planned to take ex-

mnzwxocmnﬂ\mmobiu?nmamﬁEmnm.Amaémam‘rﬁagm?mdmmmd\mmm
1963, 238-39) : ,

This is called the irrelevance of the stopping rule. Those who accept the LP

hold 1o the irrelevance of the stopping rule.!

How then, in contrast, do error statisticians render stopping rules
relevant? By operating with a different notion of relevant evidence. In
their view, it is relevant to what the data are saying about the popula-
tion parameter p to learn that the result in front of them—x—came
from the try and try again (optional stopping) method. Mathemati-
cally, this corresponds to the fact that x does not enter the error statisti-
clan’s computations by itself but always by considering error E.dﬁmwmmm
of the experimental procedure from which x arose. Information about
stopping rules does not show up in likelihoods, but it sure shows up in
a procedure’s error probabilities.

Edwards, Lindman, and Savage, quite rightly, regard this differ-
ence in attitude on the relevance of stopping rules as a central point of
incompatibility between the two approaches. That is why it is so im-
portant for us. To the holder of the LP, the irrelevance of the stopping
.EE is a point in jts favor, but to the error statistician the situation
is exactly the reverse. P. Armitage (1962), the most forthright error
statistician at the 1959 Savage forum, puts it plainly:

I think it is quite clear that likelihood ratios, and therefore posterior
probabilities, do not depend on a stopping rule. Professor Savage, Dr
Cox and Mr Lindley take this necessarily as a point in favour of the
use of Bayesian methods. My own feeling goes the other way. I feel
that if a man deliberately stopped an investigation when he had de-
parted sufficiently far from his particular hypothesis, then “Thou shalt
be misled if thou dost not know that.” If so, prior probability methods

. :G.. There are certain exceptions where the stopping rule may be “informa-
tive,” but I keep to examples that Bayesians do not regard as falling under this qual-

ification.
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seem to appear in a less attractive light than frequency methods,
where one can take into account the method of sampling. (P. 72)

The error statistician wants to take the method of sampling into
account because, as was known in 1959, the try and try again method -
allows experimenters to attain as small a level of significance as they .
choose (and thereby reject the null hypothesis at that level), even
though the null hypothesis is true.'¢ If allowed to go on 1 enough,

ability of such neous rejection 1s one! So the actual or-
overall significance level is not .05 but 11 ,

Optional Stopping Leads to High or Maximal Overall
Significance Levels

Just as, in chapter 9, we calculated the actual significance level to
be the probability of hunting down some statistically significant factor or
other given that none are really correlated, her alg the actual
or overall significance level as the probability of finding a statistically

g’

éﬁ@w@ from a fixed null hypothesis at some stopping point
or.ather Up. o the point at which one is actually found. The overall &

significance leveYaccumulatess

We need to be extra caretul with the term statistically significant dif-

 ference in the optional stopping case. Here, one keeps taking more and
~ more samples until the observed difference is computed to be statistically

significant, until it is, say, 2 standard deviations away from the null
hypothesis. The computed significance level with an optional stopping
plan réfers to the significance level that would be calculated under a
fixed sample size plan—.05. Say it took k tries to achieve a difference
computed to be .05 statistically significant. The actual or overall sig-
nificance level is the probability that.out of k tries at least one would
be computed to be .05 statistically significant, even if the null hypothe-
sis is true. . ,

Unlike the case of hunting, there is a substantial literature on how
to run and calculate overall significance levels—error probabilities—
for tests with different stopping rules. These kinds of tests are called
sequential. Sequential tests have long been part of the error-statistician’s
tool box. One reason they are so useful is that often it is estimated that
a smaller number of samples is required with a sequenitial than with a
fixed sample size test. Medical trials, especially, are often deliberately
designed as sequential. Armitage, as it happens, is a leader in the devel-

16. Feller (1940) is the first to show this explicitly. Other early discussions of [ e
this result include Anscombe 1954 and Robbins 1952, The result is also implicit in
Good 1956 and Lindley 1957. T Q\P
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opment of sequential trials, having devoted whole books to their use
and interpretation within the error statistical framework.

Example 10.1: Armitage: The Effect of Repeated Significance Tests

In his Sequential Medical Trials, Armitage (1975) discusses the effect
of repeated significance tests. He illustrates with a common example
from medicitie. Suppose that each patient scores in some numetical

fashion the effectiveness of two different treatments, say two types of

painkillers A and B. Drug A is administered one week, drug B on a
different week. The recorded observation on each patient is the differ-
ence between the two scores. Imagine that a new significance test is
performed after each patient’s scores are obtained, with a view toward
finding a difference {in either direction) computed to be statistically
significant at the .05 level. The null hypothesis assumes that drugs A
and B are equally effective. By the time 30 patients are sampled, the
probability of computing a statistically significant difference even
though the null hypothesis is true is around .3—not .05. So with 30
patients, the actual probability of rejecting the null hypothesis erron-
eously is not .05 but around .3. We would say that the calculated (or
fixed sample size) significance level is .05, but that the actual or overall
level is .3. Armitage gives the overall significance level for each number
of patients (based on the standard test of the difference between means
called the t-test), as shown in table 10.1.

Before we rule out the null (or “mere chance”) hypothesis and
argue that the result is indicative of a genuine difference, we want to
be able to sustain a reliable argument from error, We want to be able
to say that our procedure would probably have ruled in favor of the
“mere chance” explanation, were that the case, But the procedure of
trying and trying again cannot be said to have a good chance of ruling
in favor of the null hypothesis—even if the null is true. With enough
significance tests, the try and try again procedure will almost never
pass the null hypothesis even if it is true. In their useful booklet on
statistics for doctors, Bjorn Andersen and Per Holm (1984) provide a
humorous analogy for this unfairness toward the null hypothesis:

The procedure rnight be compared with new rules for determination
of the world championship in heavy-weight boxing: Only the reign-
ing champion is allowed to strike. The fight is over, whenever the
contender is out for the count of 10. The contender (like H,) has little
chance of winning, no matter how “good” he is. (P. 57)

A Funny Thing Happened at the 1959 Savage Forum

Now Savage knows all about the effect of optional stopping—he
knows all about how the try and try again method ensures reaching
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.TasLe 10.1 The Effect of Repeated Significance Tests {the “Try mﬂ@HQ Again”
Method) (Axmitage 1975, p. 29) ~

Probability of a 0.05 “significant”

Number of patients result at or before this stage,
- {differences in scores) # given the null hypothesis is true

2 0.05

10 0.09

20 ’ 0.26

0 : 0.29

40 0.31

50 ¢ 0.33

100 - 039

infinity 1.00

statistical significance. In his opening remarks at the 1959 forum, Sav-
age rehearses how “the persistent experimenter can arrive at data that
nominally reject any null hypothesis at any significance level, when
the null hypothesis is in fact true” (Savage 1962, 18). Because the per-
sistent experimenter is thereby assured of rejecting a perfectly 5.5 ﬁﬂ:
hypothesis, the standard error statistician denies that such a H&wnﬁoﬂ
provides genuine evidence against the null. But Savage mcameocmi
declares that the lesson to draw from the optional stopping effect is
just the reverse of the one the error statistician draws. The ?.oEmE. is
not with the data arrived at by a procedure of trying and trying again,
the problem is with significance levels!

These truths [about the optional stopping effect] are usually misinter-
preted to suggest that the data of such a persistent experimenter are
worthless or at least need special interpretation. . . . The likelihood
principle, however, affirms that the experimenter’s intention to per-
sist does not change the import of his experience. (Savage 1962, 18)

I shall come to the business of the relevance of “intentions” in a
moment. Savage’s argument is this: if calculating the significance level
is altered {(by the stopping rule), then there must be something wrong
with significance levels because likelihoods are unaffected. According
to the LP, says Savage, “optional stopping is no sin,” so the problem
must lie with the use of significance levels (1964, 185). But why
should we accept the likelihood principle?

Yes, the LP follows from Bayes's theorein, but significance tests are
non-Bayesian techniques. Apparently, the LP is regarded by some as
so inntrinsically plausible that it seems any sensible account of inference
should obey it. Bayesians do not seem to think any argument is neces-
sary for this principle, and rest content with echoing Savage’s declara-
tion in 1959: “1 can scarcely believe that some people resist an idea so .

LP— 0T zw oK
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patently right” (1962, 76). However much Savage deserves reverence,
that is still no argument. Ironically, what prompted Savage’s famous
declaration as to the patent rightness of the LP was a heretical confes-
sion by George Barnard. Barnard—the statistician whose arguments
Savage claims (p. 76) convinced him (in 1952) of the irrelevance of
optional stopping—had just announced to the forum that he had
changed his mind!

Explaining why he now thinks that stopping rules do matter, Bar-
nard describes an example quite like the one with which I began this
section:!” :

Suppose somebody sets out to demonstrate the existence of extrasen-
sory perception and says “I am going to go on until T get a one in ten
. thousand significance level.” Knowing that this is what he is setting
out to do would lead you to adopt a different test criterion, What you
would look at would not be the ratio of successes obtained, but how
long it took him to obtain it. And you would have a very simple test
of significance which said if it took you so long to achieve this in-
crease in the score above the chance fraction, this is not at all strong
evidence for E.S.P, it is very weak evidence. {Barnard 1962, 75)

By altering the test criteria accordingly, Barnard continues, one would
avoid misinterpreting the evidence.'® That is just what error statisti-
cians recommend—thereby making thern incoherent from the Bayes-
ian standpoint. .

The Argument %33 Intentions

. Startled by this turnabout, Savage reminds Barnard of the persua-
stve argument he himself urged (in 1952) against the relevance of stop-.
ping rules. .

The argument then was this: The design of a sequential experiment
Is, in the Iast analysis, what thé experimenter actually intended to do.
His intention is locked up inside his head. (Savage 1962, 76)

The experimenter’s intentions about when to stop sampling are locked
up in his head, and it seems absurd for intentions to influence what

17. The suggestion Barnard made to the forum was that stopping.rules matter
when you do-not have explicit alternatives. He himself was a likelihoodist and not
wowqmmﬁmwmh, although he came to give that up as well. (See, for example, Barnard

. ._m. In practice, the alteration is generally to lower the computed or rominal
significance level sufficiently so that the overall significance level is still .05, Armi-

Bmmm mmw oﬁrmumwmﬁw%dmmxnmum?méo%ob%mmmohm <mnm€o:§nmo:macmn.
tial trials. :
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the data have to say. Since significance levels take stopping rules into
account, significance levels let experimenter’s intentions count. In
their joint paper, Edwards, Lindman, and Savage remark:

frocedures are more objective Thaf classical ones. Classical proce-
Tres . . . SISt { entions of the experimenter are crucial to
the interpretation of data. {Edwards, Lindman, and Savage 1963,

239)

Although Savage (1962, 76) dedlared himself uncomfortable with
the argument from intentions, it is repeated again and again by follow-

mﬁ&mm«ﬁmm.%ﬁhﬁg%ﬁw: mﬁdmﬁmsnﬂmmmoﬂmamﬁwnu
dire conclusions about significance tests: : .

A significance test inference, therefore, depends not only on the out-

come that a trial produced, but also on the oufcomes that it could

_have produced but did not. And the latter are determined by certain

private intentions of the experimenter, embodying his stopping rule.
It seems to us that this fact precludes a significance test delivering any
kind of judgment about empirical support. ... For scientists would
not normally regard such personal intentions as proper influences on
the support which data give to a hypothesis. (Howson and Urbach
1989, 171) )

In their view, apparently, to take account of the experimenter’s sam-
pling plan is to take personal intentions into account and is unscien-
tific, while the properly scientific way of assessing evidential support is
to ask for the agent’s personal degrees of belief in hypotheses.

In fact, the whole insinuatioy that to regard optional stopping as

relevant is to make private intentions relevant is fallacious. Any and

all aspects of what goes into speciiying an experiment could be said to.

reflect intentions—sample size, space of hypotheses, predictian fo test,

and so on-—but it does not mean that paying attention to those speci-
fications is tantamount to paying aitention to the experimenter’s in-
tentions. Yet Howson and Urbach are pretty plainly arguing that since
a significance test’s error probabilities are determined by the experi-
menter’s personal intentions and since intentions should not matter to
support, a test’s error probabilities (e.g., significance levels) do not or
should not be relevant to support. Are Bayesians just committing a
gross fallacy here? . . :

They are, but they cannot see it. They have got Bayesian glasses
on, and they will not take them off. Through Bayesian glasses, there is
no place in the inference scheme to record the effect of the sampling

The irrelevance of stopping rules is one respect in which Bayesian M UL
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plan—at least not once the data are in hand. So, they view it as locked

inside someone’s head. :

Recall hunting for a statistically significant difference in the infant
training example again (chapter 9). Suppose the hunter reports the
single factor found to be statistically significant out of 20 that are
checked (e.g., late weaning and left-handedness). We have this one
statistically significant result before us, but where, one might ask, is
. the fact that it was the single factor found significant in a hunting expe-
dition through 20 factors? Is it locked up in the experimenter’s head?
Not if he or she is an honest hunter, nor if the one scrutinizing the
result is an error statistician. But that means having an eye for error
probabilitics—being able to see, in particular, that the actual proba-
bility of erroneously declaring statistical significance in this case is
not .05 but over .6. The Bayesian glasses have a substantial blind spot
here. . . . ,

Likewise with optional stopping. If one is wearing Bayesian glasses,
that is, if one adheres to the LP, then two experiments that give the
same (i.e., proportional) likelihoods to a hypothesis have the same evi-

dential bearing on the hypothesis. If one is wearing Bayesian glasses,
then, once the data are available, one cannot make out any difference
between that data having arisen from a try and try again method or
from a (nonsequential) experiment where the subject declares ahead
of time, “If I have not shown statistical significance in exactly » trials
then conclude Y have not shown the effect,” One cannot see the differ-
ence because the likelthoods are unchanged. One may well know there
is a difference in sampling plans, but that just means one knows they
had different intentions, and that cannot vommmzw make a difference to
the meaning of evidence. That, at any rate, is the way things look
through Bayesian glasses. That is the way things look to-anyone peer-
ing at evidence through the LP. Tan Hacking, in his Likelihood testing
period, also gives the argument from intentions;!® _

Can Hwanm depend on hidden intentions? Surely not; hence optional
stopping should not matter after all. (Hacking 1965, 109)

Examples of philosophers espousing the argument from intentions
could easily be multiplied. :
Notice a certain similarity with justifying why novelty should mat-
ter. If a violation of novelty is nothing more than that the experimenter
intended to find a way to account for the data, then it looks as if propo-

19. That account, developed in Hacking 1965, was based on mm.nwmbw\m likeli-
hood rule of support noted in section 6.6.
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nents of novelty appeal to the psychological intentions of the investiga-
tor. Once the aim of novelty is recognized to be severity, violating nov-
elty shows up as a problem (when it is one) with a test’s severity; and
the effect on severity, whether formally or -informally calculated,
shows up in a procedure’s error probabilities. In precisely the same
way, the error statistician has a perfectly nonpsychologistic way of tak-
ing account of the impact of stopping rules, as well as other aspects of
experimental plans. The impact is on the error probabilities (operating
characteristics) of a procedure.? ‘

In the optional stopping plan, the difference in the test procedure-,

¢learly shows up in the difference in the set of possible experimental
outcomes. Certain outcomes possible in the fixed sample size (non-
sequential) version of the test are no longer possible.*' If the stopping
rule is open-énded, then the possible outcomes do not contain any that

CTlToT othesisl .

Tt might be asked: But does the difference in error probabilities
corresponding to a difference in sampling plans correspond to any real
difference in the experiments? Absolutely. The researchers really did
something different in the try and try again scheme and, quoting Armi-
tage, “thou shalt be misled” if you do not know this. It is not just that
incorrectly reporting a test’s error probabilities incorrectly reports what
happened in obtaining a result, it also incorrectly reports what should
be expected to happen (with various probabilities) in subsequent experi-
ments on the phenomenon of interest. It must be remembered that
every error statistical inference includes a statement about future ex-
periments, whether or not they will be carried out. With an incorrect
report of a test’s error probabilities, an experimenter seeking to check
or repeat the previous results would be misled. The reported error
probabilities would not be close to those that would actually be found
in such repetitions.

I think enough has been said to banish the commeon allegation that
letting stopping plans matter is tantamount to letting intentions matter.
As such, we can reject the argument that the LP must be embraced on
pain of unjustly letting intentions enter into the appraisal of evidence.

20. The only time it seems unwarranted to draw a distinction is if the experi-
menter stops after the first test because a statistically significant result is achieved
on the frst try. Bul in that case the difference between the computed and the over-
all significance level is extremely small, and should make no difference in a “non-
automatic” use of tests, I discuss what is wrong with automatic or recipelike uses
of tests in chapter 11.

21. The sample space differs but because the likelihoods are proportional, the
difference cancels out for a holder of the LP.

;e
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But, if threats will not win us over, the Bayesian tempts with the good-
ies that await those who accept the LP.

Bayesian Freedom, Bayesian Magic

A big selling point for adopting the LP and with it the Eﬁgmun.m
of stopping rules, is that it frees us to do things that are sinful and
forbidden to an error statistician.

This irrelevance of stopping rules to statistical inference restores a
simplicity and freedom to experimental design that had been lost by
classical emphasis on significance levels (in the sense of Neyman and
Pearson). ... Many experimenters would like to feel free to collect
data until they have either conclusively proved their point, conclu-
sively disproved it, or run out of time, money or patience. . . . Classi-
cal statisticians . . . have frowned on [this]. (Edwards, Lindman, and
Savage 1963, 239)

Breaking loose from the grip imposed by error probabilistic require-
ments returns to us an appealing freedom.

LeCam, a leading error statistician {(cited at the start of section

10.3) hits the nail on the head:

It is characteristic of [Bayesian approaches] . . . that they . .. tend to
treat experiments and fortuitous observations alike. In fact, the main
reason for their periodic return te fashion seerns to be that they claim
to hold the magic which permits [us} to draw conclusions from what-

ever data and whatever features one happens to notice. {LeCam
1677, 145)

In contrast, the error probability assurances go out the window if you
are allowed to change the experiment as you go along. Repeated tests
of significance (or sequential trials) are permitted, are even desirable
for the error statistician; but a penalty must be paid for perseverance—
for optional stopping. Before-trial planning stipulates how to select a
small enough significance level to be on the lookout for at each trial
so that the overall significance level is still low. That is what Armitage’s
work on sequential clinical trials is all about.

But the Bayesian pays no penalty, or so it seems, L. J. Good, a vet-
eran Bayesian, often puts it this way:

Given the likelihood, the inferences that can be drawn from the ob-
servations would, for example, be unaffected if the statistician arbi-

22, This is the level that would be required to be reached on any given signifi-
- cance test so as to stop the trials, Setting it small enough ensures that the probability
of an erroneous rejection of the null is still small in sequential trials.
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trarily and falsely claimed that he had a train to catch, although he
really had decided to stop sampling because his favorite hypothesis
was ahead of the game... .. On the other hand, the “Fisherian” tail-
area method for significance testing violates the likelihood principle
because the statistician . who is prepared to pretend he has a train to
catch (optional stopping of sampling) can reach arbitrarily high sig-
nificance levels, given enough time, even when the null hypothesis
is true. {Good 1983, 36}

“Arbitrarily high significance levels” means significance levels as small
as one wants, Elsewhere in Good's Good Thinking:

The way I usually express this “paradox” is that a Fisherian [but not
a Bayeslan] can cheat by pretending he has a train to catch like a
gambler who leaves the table when he is ahead. (Good 1983, 135)

As often as my distinguished colleague presents this point, I remain
batfled as to its lesson about who is allowed to cheat. The significance
tester—as Good well knows—does not allow reaching arbitrarily high
(meaning small) significance levels through optional stopping. The sig-
nificance tester is not allowed to change the sample size at will, stop-
ping just because he is ahead. When error statisticians perform sequen-
tial tests, the overal! (and not the computed) significance level must be
reported. To the error statistician, what would be cheating would be to
report the significance level you persevered to attain, say .05, just as if
the test were the ordinary nonsequential sort.

Good’s point seems to be this: Error statisticians are forced to fret
about a consideration the Bayesian is free to ignore. Wearing our error
probability glasses—glasses that compel uis to see how certain proce-
dures alter error probability characteristics of tests—we are forced to
say, with Armitage, that “Thou shalt be misled if thou dost not know
that” the data resulted from the try and try again stopping rule. To
avoid having a high probability of following false leads, the error statis-
tician must scrupulously follow a specified experimental plan. But that
is because we hold that error probabilities of the procedure alter what
the data are saying—whereas Bayesians do not. The Bayesian is per-
mitted the luxury of optional stopping and has nothing to worry about.
The Bayesians hold the magic. , .

Or is it voodoo statistics?

Armitage’s Example
To some, the magic is accomplished by smoke and mirrors and
wearing Bayesian glasses. At the 1959 forum, Armitage, building on
his earlier remarks, went on o say that
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[Savage] remarked that, using conventional significance tests, if you

go on long enough you can be sure of achieving any level of signifi-

cance; does not the same sort of result happen with Bavesian meth-

' ods? The departure of the mean by two standard errors corresponds
"o the ordinary five per cent level. It also corresponds to the null
hypothesis being at the five per cent point of the posterior distribu-
tion. Does it not follow that by going on sufficiently long one can be
sure of getting the null value arbitrarily far into the tail of the poste-
rior distribution? (Armitage 1962, 72)

Armitage’s point can be simply put as follows. In many cases, re-
jecting a null hypothesis H,, say at level of significance .05, corresponds
to a result that would lead a Bayesian to assign a low (e.g., .05) poste-
rior probability to H,,. This occurs with so-called uniform or uninforma-
tive priors. (That this is so is often touted by Bayesians as a point in
their favor: Whereas the most an error statistician can say is that this
procedure has a low [.05] probability of erroneously rejecting the null,
the Bayesian, thanks to his prior probability assignment, can assign
the low probability to the specific hypothesis H,.)** Hence, Armitage
reasons, if error statisticians—if they go on sampling long enough—
are assured of reaching a .05 significant result, even though Hj is true,
then Bayesians—if they go on sampling long enough—would be as-
sured of reaching a low (.05) posterior probability in H,, even though
H, is true. (The assurance here is with high probability or, in the limit,
with probability one.} That is: ,

L. In certain cases, rejecting a null hypothesis H,, say at level of
significance .03, corresponds to a result that would lead a Bayesian to
assign a low (e.g., .05) posterjor probability to H,

2. 1f one is allowed to go on sampling long enough (i.e., the try
and try again procedure), then, even if H, is true, one is assured of
achieving a .05 statistically significant difference from the null hypoth-
esis H,. : .

3. The e, if one is allowed to go on sampling long enough,
then, in the cases described in (1), one is assured of reaching a low
posterior probability in H,, even though H, is true.

Now the error statistician is not allowed to go.on trying and trying,
at least not without paying a penaity. The penalty, we said, is that the
overall significance level—in the extreme case I—must be reported.
The stopping rule matters, But Bayesians are free! They are allowed to
g0 on sampling and the stopping rule does not alter the likelihoods,

23. See, for example, DeGroot 1973."
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hence the posterior is just the same as if the case d‘amHm..SObmmmsmbnmr ..
It follows that, in going on long enough, a Bayesian 1s m.mmsuom,om mmu W
signing a low posterior probability to H, even Eocmr H,is true. _
So, who is allowed to mislead? o
Although Savage wants to deny >H5#mmm.w implication, he mﬁ@nmﬂ.m
to grant it, though fuzzily, and skips to a a&mamﬁ sort of examp MH
While I think there are problems with this &m@.,mbw mwm\mé._n as we
(see Rosenkrantz 1977, 199), I want to keep to Armitage’s kind of ex-
ample.? ] o A
Armitage’s example goes like this. The null hypothesis H, is anas- q, ui
seTtion about a population parameter w. As in example 10.1, p might 4
measure the mean difference in the effectiveness of two &Em. treat- f e
ments. H, asserts that the treatments are equally effective, that is, that | ~ %
1 equals 0. . .

H,: The treatments are equally effective: p equals 0. e §

The experiment records X which, in this case, is the mean &mﬂmﬁm vcrv .
in scores accorded to the two drug treatments in a mm:.mﬁ_m of n patients. rcfn
The sample size #, however, is not fixed but is detexmined by a stopping

rule. The stopping rule—an example of a try and try again plan—is wo g
" keep taking more samples until H, is rejected at Em .05 level, by the .g
usual prespecified significance test: _
(1) Stopping rule: Keep sampling until H, can be rejected at the .05 -
level.

That is, the stopping rule is to keep .mew:bm EHE. Xis N.mﬁmwnma @ms-
ations away from 0 (the hypothesized value of p in M&. in either Qﬁm.n-
tion. The standard deviation here is the standard deviation of the statis-
tic X, but for simplicity, let us just abbreviate it as 5.d.?* So we have
(letting [X] be the absolute value of X)

(1} Stopping rule: Keep sampling until Xl=2 h..a_.
; .

Following this stopping rule, one is assured of achieving a .05 mwmmwm-
cant difference even if H, is true. But with a so-called uninformative

24. The example Savage skips to involves comparing two m:EuHm.vﬁﬁEmmmm.
Rather than lending plausibility to Savage's cause, wommbﬁ.mnﬁ {while ﬁﬁanm a
Bayesian) thinks it shows that Savage goes too far in ignoring the stopping rule.
Rosenkrantz’s analysis has been questioned by mmman&m_m (1979b, n. 4). )

25. This would more properly be written as s.d.(x). When the standard %Sm.-
tion is estimated, as is most often the case, it is ambmm the standard error, but it
seems simpler to stick with a single term. Armitage .ﬂm_AMmm .En random variable X to
be Normally distributed with mean . and standard deviation 1. In that case, s.d.(X}
isu™ ’
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or diffuse prior probability assigniment to . such an occurrence would
.noﬂﬂmm@ong to assigning a low posterior probability to H,. Hence, fol-
lowing this stopping rule, the Bayesian would be assured of mm&m:ﬁw
a low probability to H, even though H, is true. This is Armitage’s argu-
ment. No satisfactory answer has been forthcoming, nor is there one

Armitage is right. .

Berger and Wolpert

To my knowledge, there are only a handful of Bayesians (or other
roEm.ﬁm of the LP) who have specifically addressed Armitage’s example:
.Eom.ﬁ H.Fﬂ accept Savage's dismissal of it.2 Berger and Wolpert (1988)
in their interesting monograph, show themselves to be as ardent a ﬁ&m
of proponents of the LP as it is likely to have. Still, even they concede
Armitage’s point. But, as they want to retain the LF, some defensive
moves are called for.2” s .

Since Berger and Wolpert treat Armitage’s example in terms of
confidence intervals, I will too. Recall example 8.2. Given some result
one forms an interval within which the parameter of interest, mm
hypothesized to lie. Asis standard, we can use a lowercase ¥ to wmﬁwm-
sent the observed value of the random variable X. (This is easier to

HWNQ HHHWHH X b HH@HQ v HUW mﬂmhﬂamHQ 95 ercer i
oas * H A”OH..—m.Q, V e
E Mm m “@ ENce 1mnter mw ﬁmw S

(2) Estimate that p is within 2 standard deviations of the observed
mean x.

{I use 2 rather than the exact value of 1.96.) That i
| 96, at is, th
confidence interval is v ¢ 92 percent

(2) Estimate that p equals ¥ + 2 5.4,

Berger and Wolpert agree that a Bayestan would use this interval in
the usual fixed sample size case, adding: .

Of course, he would not interpret confidence in the frequency sense,
but Emﬁm.ma Socﬁ (probably) use a posterior Bayesian viewpoint with .
the noninformative prior density. (Berger and Wolpert 1988, 80)

26. No one, to my knowledge, has identified i
. 3 X the flaw in S " ”
simple general formula” on page 73 of Savage 1962. vage’s use of “the

27. In a forthcoming paper, “Reasonin
) 18 ) . g 10 a Foregone Conclusion,” Ka-
dane, Schervish, and Seidenfeld set out mathematical conditions under which

d to reason “to a foregone conclusion” erron-
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Whereas the frequentist says only that this particular estimate was
generated by a procedure with a 95 percent probability of correctly
including the value of , the Bayesian can assign the particular esti-
mate a posterior probability.?® In particular, with the so-called nonin-
formative prior, they would assign it a .95 posterior probability. We can
now see how Armitage’s argument goes through.

Berger and Wolpert continue: “Suppose now that the experi-
menter has an interest in seeing that i = 0 is not in the confidence -
interval. He could then use the stopping rule” {1} above (ibid.; Ireplace
§ with p). Let us rewrite the stopping rule to relate directly to confi-
dence intervals. The null hypothesis H, asserts that . = 0. Rejecting
H,~—finding ¥ statistically significant from 0—is equivalent to 0 not be-
ing included in the interval estimate formed with X. Hence assuxing
that p = 0 is #ot in the 95 percent confidence interval is equivalent to
assuring that the null hypothesis H, is rejected at the .05 level. So the
stopping rule in (1)-~keep sampling until H, is rejected—stated in
terms of confidence intervals is ,

{1) Keep sampling until the 95 percent confidence interval formed
excludes 0.

So the Bayesian experimenter interested in keeping 0 out of the inter-
val is free to use stopping rule (1). At the same time, Berger and
Wolpert concede, “the [Bayesian] conditionalist, being bound to ignore
the stopping rule, will still use {2) as his confidence interval, but this
can never contain zero” (ibid., 81).
" (The term “conditionalist” comes from the fact that, for a holder of

the LP, inference must be conditional on the actual ¥ observed.)

Hence Berger and Wolpert allow that “the frequentist probability”
that intervals formed by this procedure would include 0, even when 0
is the true value, equals zero! Equivalently, there is zero probability of
accepting the hypothesis that i = 0, even when that hypothesis is true.
In short, they find they cannot get around the conclusion that, despite
the fact that . does equal 0,

the experimenter has thus succeeded in getting the conditionalist to
perceive that p. # 0, and has done so honestly. (Pp. 80-81})

Thus, they concede Armitage’s point—the very point that Savage had
denied or skirted. _ ,
Now for the defensive moves. Berger and Wolpert are at pains to

28, It leads to a posterior distribution for p equal to a normal distribution with
mean X and a standard deviation equal to #*% :
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uphold the LP. In examples such as Armitage’s, Berger and Wolpert
maintain, the LP only “seems to allow the experimenter to mislead a
[Bayesian] conditionalist. The ‘misleading,’ however, is solely from a
frequentist viewpoint, and will not be of concern to a conditionalist”
(ibid., 81). Bayesians remain unconcerned, presumably, because they
are not in the business of calculating error frequencies.
Despite their professed lack of concern, Berger and Wolpert, like
+ Savage, are plainly uncomfortable with Armitage’s result. They leave
off the example suggesting that in appraising the plausibility of the LP
we should trust our intuitions in one of the other examples they of-
fer—one where the LP gives the intuitively correct inferefice—“rather
than in extremely complex situations such as [Armitage’s example]”
(ibid., 83). But the example we are to trust does not involve optional
stopping,* and the confidence interval example is rather ordinary.
Armitage tells us it is a standard situation in clinical trials, 3
Examples analogous to Armitage’s have been produced by others,

notably Alan Birnbaum.* To the error statistician, such examples are

counterexamples to adopting the 1.P:

Thus it seems that the likelihood concept cannot be construed so as
to allow useful appraisal, and thereby possible control, of probabilities
. of erroneous interpretations. {Birnbaum 1969, 128)

I shall comé back to Birnbaum in chapter 11.

It should be emphasized that this problem exists even for so-called
objective Bayesians (those who strive to determine objective prior
probabilities). That is the reason I said it was the outgrowth of a differ-

29. Perhaps the open-endedness of the stopping rule makes the case exotic,
but less dramatic and still seriously troubling cases are generated with stopping
rules only as high as 100, as Armitage shows in his examples with medical trials.

30. One Bayesian ploy would be to insist that learning of the use of such a
stopping rule would make the agent change his prior in such a way that the high
posterior would be avoided. Not only is the kind of prior that leads to the trouble
a commeonly acceptable one, but such an admission would also conflict with the
Bayesian insistence that once the evidence is at hand the likelikoods teli all. (As
always, we are talking about the cases in which stopping rules are uninformative
according to the LP.) Ironically, since error probabilities are not supposed to matter
for a Bayesian, this ploy really would seem to appeal to the intentions of the inves-
tigator. Moreover, this Bayesian ploy depends on the agent reasoning that an exper-
imenter using such a stopping rule probably thinks the nult hypothesis is true, and
50 revising his prior accordingly. But it seems at least as plausible, if not more so,
te suppose that an experimenter planning to go on until the null hypothesis is
rejected really believes that the effect is real and that the null hypothesis is false.

wH.w#:,cmcanzmmmmwﬁzmwwmm.c:_uw meam:m‘ogGwm\nommﬂmﬁ:b Ney-
man 1952, . .
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ence between Bayesians and error statisticians that runs even m.mmﬁmu
than the use or nonuse of prior probabilities in hypotheses. It is _,.w._m
difference between the irrelevance and the relevance of error wwo.cmd;- :
ities of procedures. If one is Bayesian enough to ma.w.mum to mmﬁm._mb
coherency, hence to the LE, one is mbocmﬂ .oﬁ a conditionalist to reject
error probabilities and with them the familiar methods of standard er-
o m,mwm”mww standard methods conflict with the LP is readily accepted

by leading Bayesians. Take Lindley:

The most obvious violation of the likelihood principle occurs with
the idea of a confidence interval, with its concept of repetition of the
experiment. (Lindley 1976, 361}

Savage, discussing the

“nice properties,” exemplified by unbiasedness, mﬁsmas@.uﬁﬂaﬁﬁ
mean squared error, symmetry (or invariance), a given significance
level, and so on (Savage 1964, 179)

declares that

practically none of the “nice Eowmwmmm,, respect Em likelihood prin-

ciple. (Ibid., 184) .
That is why I ﬁrwbw:whwmnhmsm Wolpert's initial response to bﬁﬂ&mmm .
i ne fr i i Hrrts - “the ‘mis-

e ist viewpoint.” After all, it is on y

through frequentist considerations of error Eﬂ.udmcw._ﬁmm that Armi-
tage’s case is problematic, and those considerations violate the LP to
which Bayesians adhere. .

There, then, we have it. The reason Bayesians cannot be misled
(in the case of optional stopping) is that they reject (as .ﬁowmﬁmm the
LP} the frequentist viewpoint on which the error .nm?&mﬂo; @m@msam_
Anguish over a procedure’s high probability of being wrong A:w bn?-
tage’s-example, as high as probability 1} is an error statistician’s afflic-
tion. The Bayesian is not so afflicted. If I never check my bank mnnmE:
(and I always believe the correctness of my statement), then, in a
sense, the bank can never mislead me.

The Relevance of Outcomes Other Than the One Observed
Let us explore a bit more why error probabilities violate the LP.
The reason, in a nutshell, is that error probabilities ask what EO;E
happen for data sets other than the one actually owmmu.a,.ma. &:;mﬁ is
wrong with us error statisticians, from the Bayesian conditionalist per-
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@ spective, is that we keep thinking that considerations of outcomes that

are relevant for interpreting the evidential import of the data.

.%rv Those who do not accept the likelihood principle believe that the

probabilities of sequences that might have occurred, but did not,

.o somehow affect the import of the sequence that did occur. (Edwards,
: Lindman, and Savage 1963, 238)

The error statistician Has only one way of responding to this m:mmm-
tion. “Guilty as charged!” We remain steadfast no matter how leadingly

Bayesjans ask (echoing a line made famous by Harold Jeffreys), “What

has what might have happened, but did not, got to do with inferences

“{rom the experiment?” (Lindley 1976, 361), and no matter how intim-

idating the rhetoric of prominent Bayesians is (e.g., E. T. Jaynes, an
objective Bayesian): - :

The question of how often a given situation would arise is utterly
irrelevant to the question how we should reason when it does arise. I
don’t know how many times this simple fact will have to be pointed
out before statisticians of “frequentist” pérsuasions will take note of
it. (Jaynes 1976, 247)

What we error statisticians must rightly wonder is how many times we
will have to point out that to us, reasoning from the result that did
arise & crucially dependent upon how often it would arise. Lacking
such information prevents us from ascertaining which inferences can
be reliably drawn. : _
In criticizing the hunter, the error statistician notes, “But had this
one not been statistically significant, it is very probable that you would
have unearthed some other factor that was—even if none are really
correlated.” What would have happened is at the heart of the worry
in the try and try again (optional-stopping) plan as well. The severity
of a test is a measure of the relative frequency with which the test
would lead to correctly failing (or not passing) a hypothesis in some
. sequence of applications. Virtually all the uses of statistical ideas in
learning from error throughout this book depend critically on such
~ considerations of “would have beens.” What makes standard error sta-
tistical tools so useful for scientific inference is that their formal proper-
ties, error probabilities, enable learning about what would be expected
if various errors exist—the key to experimental arguments from error.
Yet these error properties and.test criteria based on them are what the

Bayesian is only too happy to declare irrelevant. As Lindley (1971)
stresses, ,

could have resulted=—6uicomes other than the one that did resuli—
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unbiased estimates ... sampling distributions,. significance levels,
power, all depend on something more [than the :wm.mbooa func-

. tion]—something that is irrelevant in Bayesian inferenice—namely
the sample space. (Lindley 1971, 436} '

In his admirably fair-minded work comparing different schools of in-
ference, Vic Barnett explains why. In the mmwmmwmu view,

inferences are conditional on the realized value x; other values which
may have occurred are regarded as irrelevant. . . . No consideration
of the sampling distribution of a statistic is entertained; sample space
averaging is ruled out. Thus there can be no consideration of the bias
of an estimation procedure and this concept is totally disregarded.
(Barnett 1982, 226)

Bayesian consistency requires rejecting the foundations of the error
statistical methods, despite the widespread use of these methods

throughout science. .
This, then, is the bottom line. Our aims, our notions of relevant

,mﬁ%bam‘ our criteria for judging satisfactory inference (the “nice prop-
erties”), our notions of probability (with a few exceptions) are mﬁw-

ingly different from those of the Bayesians. Quite aside HS.B whether

one accepts my position on the value of error statistical ideas, what
cannot be denied are these differences. The lesson for metamethodol-

ogy is this: Bvery critique of methodology from mﬁ Bayesian perspec-| $
tive must be seen as contingent upon accepting their aims in favor of

error statistical ones. If the methodological rule in question turns out \Yﬂ.
10 concern promoting an error statistical aim (e.g., severity), then a )
Bayesian critique will be misleading if not just question-begging. me &r\
error statistician’s conception of “being misled” is very different from .h
that of the Bayesian: perhaps it is a gestalt switch that separates them. /2
The philosopher seeking to apply ideas from statistics to the philosophy

of science needs to decide whether to sign up for the LP (e.g., Bayesian)
paradigm or the error statistical one, or perhaps something altogether
different. :

10.4 SOME ANTICIPATED OBJECTIONS

Some might object that I am overlooking the ways in which some .m .m..
manage to be Bayesian while at least a little bit of an error statistician

at the same time. A main way would be to use Bayesian ways and

yet strive to assess the reliability of these methods in a mnb&bw error \N |
probability sense. Such error statistical {or “robust”) Bayesians, if I un-
derstand their positior-seern o me to fall onto the error statistical




360 ] . CHAPTER TEN

side.”? Nothing in the error probability approach prevents using Bayes-
ijan measures as measures. of “fit” whose operating properties can be
investigated. Such developments may.well be part of “the historical
process of development” of error statistical theory to which E. §. Pear-
son alludes (Pearson 1966d, 276).

Aside from such new and innovative hybrid approaches, am I not
overiooking the eclecticismm that exists in statistical practice? No. I be-
gan this chapter acknowledgirg that error statistical inferences often
correspond-to. procedures Bayesians would COUNTENATICE, AIBEil with

differences in interpretation and justification. It is certainly open to

error statisticians to apply Bayes’s theorem with well-defined statistical -

hypotheses where standard prior probabilities have been found to
work well. Likewise, Bayesians can and do appropriate standard (er-
ror-statistical) methods by giving them Bayesian justifications. One
might regard L _J. Good’s “Bayes-non-Bayes compromise” as a system-
atic attempt to appropriate error statistical methods in this way.>* In

practice, dabbling in one or the other of these methodologies even

without being too clear on the justification is often innocuous. This is
not the case when Bayesian principles are applied to philosophy of
science. :

1 earlier outlined three main ways of applying a theory of statistics
to philosophy of science: (1) to solve philosophical problems {e.g., Du-
hem’s problem); (2) to model scientific inference; and (3) to carry out
a metamethodological critique {e.g., appraise novelty requirements}.
For each of these applications, the differences of interpretation and
justification called for by the Bayesian and error-statistical philosophies
are serious and are ignored at our peril.

32. This is not the case for Bayesians who are only willing to employ error-
statistical methods if they can be given a subjective Bayesian interpretation, or who
employ error probabilities disingenuously (e.g., because the customer wants or ex-

© pects them). o

33. Good's compromise, as I understand it, remains fully Bayesian (see note
32). However, his program has brought forth 2 number of important relationships
between error probability and Bayesian calculations,

CHAPTER mhmﬁmz

Why Pearson Rejected the Neyman-Pearson
(Behavioristic) Philosophy and a Note on
Objectivity In Statistics

The two main attitudes held to-day towards the theory of probabil-
ity both result from an attempt to define the probability number
scale so that it may readily be put in gear with common processes
of rational thought. For one school, the degree of confidence in a
proposition, a quantity varying with the nature and extent of the
evidence, provides the basic notion to which the numerical scale
should be adjusted. The other school notes how in ordinary life a
knowledge of the relative frequency of occurrence of a particular
class of events in a series of repetitions has again and again an
-influence on conduct; it therefore suggests that it is through its
link with relative frequency that a numerical probability measure
has the most direct meaning for the human mind.

—E. S. Pearson, “On Questions Raised by the noE__u_.bmmoﬂ of
Tests Based on Discontinuous Distributions,” p. 228

11.1 INTRODUCTION

The two main attitudes Pearson is speaking of correéspond to two views

of the task of a theory of statistics: the evidential-relation or E-R view
and the error probability view. We have traced the key ways in which
disputes about methodological rules reflect this underlying distinction
in aims. Philosophers of induction, we said, have typically embraced
the first of these two views, My primary aim has not been to settle

. this question of aims, but rather to show how a number of disputes in

philosophy of science reflect this difference in aims, and to build an
account of experimental learning based on the error statistics ap-
proach. I am also concerned with showing that the error approach is at
the heart of the widespread applications of statistical ideas in scientific
inquiry, and that it offers a fruitful basis for a philosophy of exper-
iment. : . ,

361




